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Abstract—Tracking objects across multiple frames is a well-
investigated problem in computer vision. The majority of the
existing algorithms assume an accurate initialization is readily
available. However, in many real-life settings, in particular for
applications where the video is streaming in real-time, the
initialization has to be provided by a human operator. This
limitation raises an inevitable uncertainty issue.

Here, we first collect a large and new dataset of inputs
that consists of more than 20K human initialization clicks,
called as HIC, by several subjects under three practical user
interface scenarios for the popular TB50 tracking benchmark.
We analyze the factors and mechanisms of human input, derive
statistical models, and show that human input always contains
deviations, which exacerbate further when the relative object-
camera motion becomes large. We also design and evaluate
alternative refinement schemes, and propose a strategy that refits
an object window on the most probable target region after a
single click. To compensate for the human initialization errors,
our method generates window proposals using objectness cues
extracted from color and motion attributes, accumulates them
into a likelihood map that is weighted by the initial click position
and visual saliency scores, and assigns the final window by the
maximum likelihood estimate. Our experiments demonstrate that
the presented refinement strategy effectively reduces human input
errors.

Index Terms—Object initialization, object tracking, human-
computer interactive, error compensation.

I. INTRODUCTION

V ISUAL tracking plays an important role in computer
vision applications. In the past, a vast number of ap-

proaches have been developed to address various tracking chal-
lenges, such as illumination and appearance changes, full and
partial occlusions, background clutter, uncontrolled camera
motion, and low contrast [1], [2], [3], [4], [5], [6], [7], [8], [9].
Most of the existing tracking methods presume that the given
initialization information, which is usually a rectangle box in
the first frame, is correct and sufficient enough to launch the
tracking process. Nevertheless, this strong assumption often
causes the state-of-the-art trackers to suffer from degraded
performance due to inaccurate priors [7], [10], [11], [12].

It is unlikely that a precise initialization to be available for
all uses. For applications that operate with a wide spectrum of
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Fig. 1. Human initialization click distributions for different videos. Since the
human reaction times vary due to many factors, input can be in any frame. As
visible, when the clicks are entered, target objects may have already moved
significantly, resulting in inaccurate clicks outside the object regions.

objects, learning accurate models for automatic initialization
is not a feasible option, thus the initial target location for
tracking has to be provided by an expert. Many real-life
human-computer interaction scenarios, such as selective-focus
in digital cameras and target tracking in robot navigation, are
designed to work for a general class of objects with manual
initialization under different circumstances. As a result, the
accuracy of the human input becomes a critical factor.

Intuitively, initializing the target with more meticulous
information, such as object boundaries and intricate mod-
els, can reduce the uncertainty and minimize tracking drift
issues. However, more complex information require longer
user interaction time. This is not possible for streaming video
and moving camera applications, for instance, deployed on
a handheld device or a pan-tilt-zoom surveillance camera.
Coupled with such restrictive operation conditions and real-
time processing requirements, most tracking applications can
only support simple and quick initialization schemes. This
invokes the demand for inferring not only the center location
but also the scale and object boundary from a single click
input.

In this paper, we aim to provide a deeper understanding to
the limitations of human initialization and establish a human
input model. To this end, we use a computer interface that
allows human subjects to click on targets while a video
sequence is being displayed. We collect and analyze several
aspects of a large corpus of actual human initialization clicks,
HIC dataset, captured for one of the most extensive object
tracking benchmarks, TB50 [13].

The HIC dataset is the first and only publicly available
dataset that contains instances of human provided initializa-
tions. Here, a click is an entry that represents one (or a few)
image coordinates. Albeit simple and quick, a single click
is not fully reliable. Due to many elements including erratic
camera and object motion patterns, latency in human reaction
times, small object size, and system interface impediments,
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it is difficult to ensure the consistency and accuracy of the
human input. As can be seen in Fig. 1, click positions contain
significant deviations from their ground-truth locations due
to object-camera motion. These deviations may consequently
cause degeneration even at the very beginning of the tracking
process. Therefore, it is necessary to refine the click positions
to improve the input accuracy.

Aiming to fill the gap between what a click provides and
what degree of reliability in the initialization step a tracking
algorithm requires, we focus on a refinement process that can
• infer object region from a single click for arbitrary

targets;
• robust to relative camera-target motion, existence of mul-

tiple objects, and scene clutter;
• reduce human input errors; and,
• be independent from the tracker.

To minimize the adverse effects of unreliable initialization-
s, our second contribution is a multi-cue based refinement
framework that repositions the click and estimates the target
scale for each human click. This refinement is based on the
maximum likelihood estimate using an objectness confidence
map, which combines both saliency cue and initial click
information. We conduct extensive experiments with different
component selection options to determine an optimal combi-
nation. In the case of the existence of multiple objects, the
refinement process relies more on the human clicks, and we
make further analysis of this scenario in the experimental
section.

The remainder of this paper is organized as follows: We
present an overview of the related work in Section II. Our
HIC click modeling is explained in detail in Section III. The
refinement process is described in Section IV. Our experimen-
tal evaluation and results are presented in Section V.

II. RELATED WORK

A comprehensive overview of the existing tracking methods
is outside the scope of this paper. Here, we discuss the tracking
approaches in the light of their robustness to initialization
errors.

Several remarkable object tracking benchmarks [10], [11],
[12], [14], [15] have evaluated and compared popular trackers.
Experimental protocols of some benchmarks also advocate
initializing trackers with perturbed bounding boxes to analyze
the robustness to initialization errors. For instance, the protocol
in [11] uses spatial translations (10% of target size) and scale
variations (0.8×-1.2×) to generate alternative initializations.
The reported results for [11] show that the bounding boxes
with larger scale often lead to significant decrease in perfor-
mance since larger regions contaminate initial window with
more background pixels and many of the state-of-the-art track-
ers, such as [5], [16], [17], are sensitive to the subversion of the
object model. For the same purpose, the VOT challenge [12]
adds translations (10% of the target size) and rotations (±0.1
radians) to the ground-truth boxes. Although there is no scale
perturbation and the translation is rather small, majority of the
tested trackers still suffer significant performance degradation.
The noisy initialization experiment in [10] contains more

severe spatial errors up to 20% displacements of the initial
window, which consequently, causes an average performance
loss of 10% for all trackers.

All these extensive studies indicate that even initialization
errors less than 20% deteriorate the performance. Our experi-
ments exposed that the typical error in human clicks could be
even much larger.

Few trackers considered handling inaccurate initializations.
Among those, the initialization-insensitive tracker (IIT) [7]
is based on the generalized Hough transform voting [18]
weighted by both motion similarity and descriptor similarity
of feature points. To cope with imperfect initializations, it
learns a feature set and updates the set in an online fashion,
however, the model is still depends highly on the bounding box
in the first frame. Therefore, an initialization with significant
deviation still distracts IIT. Besides, the benchmark results
in [12] show that while IIT focuses on initialization robustness,
its general performance falls behind the conventional trackers.

Although most tracking methods do not have specific mech-
anisms to deal with inaccurate initializations, some react more
robustly than the others [10]. For instance, Struck [2] benefits
from maintaining a positive and negative set of support vectors
sampled according to an overlap based similarity measure in
its classifier [10] and Haar-like features that are less sensitive
to background clutter [11]. Hough-based tracker [6] makes
a new segmentation using GrabCut [19] based on a rough
classification in every new frame. The segmentation process
helps to reduce the negative effects of inaccurate input, yet the
initial classifier still relies heavily on the initial information.
In [20], a space containing a set of trackers in different states
is maintained. This method gets samples from the space and
constructs the most fitting combination during the tracking
process. Strong subsets of the tracker states make it robust
to slight errors. However, similar with Struck and Hough-
based tracker, the robustness against initial disturbances is still
restricted within a relatively small range.

Instead of starting the tracking process with a given window
in the first frame, some vision systems employ automatic
initialization schemes utilizing motion cues such as back-
ground subtraction [21], [22], long-term trajectory consensus
[23], [24], motion edge [25], and contours [26]. Nevertheless,
object movements are not always immediately available at the
initialization stage, which impedes motion indicators. Besides,
analyzing long-term trajectories requires abundant memory
and computational resources [27], [28], thus, these schemes
are not suitable for most applications. In case a model of
the target object is available before tracking, the initializa-
tion can be achieved by a detector as in [29], [30], [31],
[32]. Obviously, these methods are not applicable to arbitrary
objects. Saliency is another cue considered for tracking and
automatic initialization [33], [34]. A bottom-up saliency map
can suppress background regions and highlight salient regions.
Yet, there is no guarantee for the salient region to correspond
to the target object [35]. Due to these serious restrictions of
automatic initialization schemes, manual initialization process
is widely used for most real-world applications.
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III. MODELING OF CLICK DISTRIBUTION

There is no question that the target object can be marked
accurately if we can stop the video stream for a sufficiently
long duration. However, this may not be possible for many
reasons:
• For streaming video, one can pause video only for a

duration that the processing time of the buffered frames
can be absorbed back quickly to prevent from persistent
latency. Considering the typical computational speeds of
the state-of-the-art trackers and memory limitations of
processing platforms, the latency due to buffering cannot
be neglected. Dropping frames may not be an option
either as the increased relative motion of the target may
lead to negative effects on trackers.

• In real-time tracking tasks, e.g. selective zoom feature
for handheld devices, there exist stringent reaction time
requirements subjective to the motion of the object and
camera.

• In tracking-driven applications, e.g. PTZ camera systems
where camera movement is directly dictated by tracking
results, one cannot simply stop the camera, thus pause
video, for long due to the mechanical limitations of the
system.

To evaluate realistic initialization operations, we build a
visual interface to collect clicks from different human subjects.
Based on the interface, we design three scenarios that simulate
different system constraints. From mild to severe, they are
Pause&Click, Follow&Click, and Spot&Click.
• Pause&Click: In this scenario, subjects are allowed to

temporally pause the video stream at any time and then
click on the target center in the paused frame. The time
cost is defined as the duration between pausing and
clicking. While subjects are advised to click as soon
and as accurate as possible, they have the freedom of
balancing the reaction time and the clicking precision.

• Follow&Click: In the second scenario, the pause option
is unavailable. As we do not impose a constraint about
when to click, users are only asked to click on the target
center as accurately as possible. They are allowed to
visually observe the target object and make their entry
anytime (any frame) they are comfortable.

• Spot&Click: The last scenario is more challenging as it
sets a reaction time constraint on the user in addition to
not having the capability to pause the video. Subjects are
required to click on the target object within a maximum
time limit, which is 1.5 seconds in our experiments.

In the following parts of this section, we describe the
experimental settings of the click collection (Section III-A
and III-B), analyze the Pause&Click and other two scenarios
(Section III-C), and discuss the click models (Section III-D)
in detail.

A. Object Tracking Dataset

We use a comprehensive tracking benchmark dataset, TB50
[11], to collect human clicks. TB50 contains 49 sequences
with 26,529 frames covering various target classes such as

faces, pedestrians, different animals, vehicles, and other rigid
and nonrigid objects. The scenes include indoors, outdoors,
daytime, and nighttime. These videos are captured from TV
broadcasts, surveillance cameras, and handheld devices (see
samples in Fig. 8). The original frame size varies from 128×96
to 768× 576. The frame rate of the videos is 25 fps.

To categorize videos according to their target attributes, we
use the average target velocity and target size of each video
sequence. These attributes are computed only within the parts
of the videos where the human subjects are given the task of
clicking on the target object in order to allow an objective
comparison across different videos. The velocity and size are
based on normalized frames (short-sides to a fixed value).

B. Human Initialization Click (HIC) Collection

Marking object area with a rectangle or drawing object
boundary requires significant user interaction, which makes
them unsuitable for time-critical applications. Therefore, we
use much faster single click inputs albeit no scale information
is provided by a single click.

On the TB50 dataset, we collected more than 20,000 track-
ing initialization clicks from 10 skilled human operators. We
presented these subjects a short demonstration of initialization
procedures and ground-truth object windows in order to make
them familiar with the interface and each scenario. We asked
the subjects to exercise clicking action on sequences that are
not in the TB50 dataset before collecting the initialization
clicks.

During the click collection, we imposed these guidelines:
• To simulate diversity in object appearance, a random

initial frame used for each sequence at each click.
• To prevent subject bias, the same number of clicks are

accepted from each subject for each sequence.
• To minimize memorization bias that may happen due to

watching the same sequence, only a small number of
clicks per sequence from each user is collected.

• Unintentional and clicks on the wrong objects are re-
moved.

On the visual interface, we normalize all videos to the same
size (short-sides to a fixed value) while keeping their aspect
ratios constant. This is aimed to have a consistent visual field
of attention. In case the video frames are displayed in their
original size on the screen, larger frames may involve more
time to move the input device, e.g. mouse, thus more time to
click. The average target size for the dataset after the display
normalization is 37× 53 and the average frame size is 367×
243.

C. Click Accuracy

To measure the accuracy of the clicks, we use the spatial
distance between click position and ground-truth object center.
Target objects in different sequences are different in size,
hence the spatial error cannot be directly compared. For
example, a click with 15-pixels error stays inside a 40 × 40
target, however, it is outside a 10 × 10 target. Therefore, for
accuracy assessments we normalize the target window to a
50× 50 unit region in every frame for comparisons.
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Fig. 2. HIC distributions for the whole TB50 dataset. Rows show
Pause&Click, Follow&Click and Spot&Click scenarios, respectively. Target
windows are normalized to unit size (50 × 50). Best viewed on screen and
in color.

We also analyze the overlap ratio between the ground-truth
region and a window centered on the click. The size of the
window is set to the ground-truth object size. Notice that,
no object size information is available in-situ, thus the actual
overlap might be much lower.

The statistics of human clicks are given in Table I. As visi-
ble, the initialization error increases along with the operational
restrictions.

For the Pause&Click scenario, the subjects take an average
14.84 frames for clicking on the target objects with an average
distance error of 13.03 pixels with respect to unit region. We
interpret this error as due to the instruction of quick reaction
time as well as the natural variance between human operators
who supplied ground-truth information and clicks. At 25 fps,
this corresponds to an average target movement of 63.10 pixels
(in normalized frames), meaning that the target center is often
outside the original target region when the click is provided.

For the Follow&Click and Spot&Click scenarios, the HIC
distributions are shown in Fig. 2. The red rectangle indicates
the normalized ground-truth region and each blue point is a
click. As can be seen, there are many clicks having relatively
large errors.

For the Follow&Click, the average error for all video se-

quences (including the erratic motion videos) is 18.59 pixels
and 19.55% of the clicks are located outside the ground-truth
target region. These numbers increases to 25.11 pixels and
30.45% respectively for the Spot&Click.

The best overlap performance between the ground-truth
window and the window with click center and the correct
object scale is only around 0.63, which is for the smooth and
slow motion sequences. The overlap dramatically decreases
for the erratic motion sequences. This shows more severe
initial distortions than the experimental protocols provided by
the benchmarks [10], [11], [12]. As a result, typical error is
expected to be much larger indicating the practical tracking
applications faces with more challenging situations when user
initializes the target object.

D. Influence of Target Velocity and Target Size

There is significant error diversity across different se-
quences. To determine what leads to this variance, we focus
on two attributes: target velocity and target size.

Figure 3 shows the sequences ranked according to their
target velocity and size. As expected, the click error has a
positive correlation with the target velocity. Faster targets,
in particular those with erratic motion, cause larger errors.
For the category of sequences containing fast and erratic
camera-target motion, such as the ones captured by handheld
cameras, even the most careful subjects may fail to initialize
the targets accurately. HIC distributions of the smooth and
erratic motion sequences are given in Fig. 4. As shown,
the error for the erratic motion sequences is higher than
the smooth motion. Under the Pause&Click scenario, the
average center error increases from 11.75 pixels for smooth
motion to 17.29 pixels for erratic motion. For more realistic
Follow&Click and Spot&Click scenarios, the increase is from
14.72 pixels to 32.63 pixels, and from 22.01 pixels to 35.73
pixels, respectively. As presented in Table II, approximately
16%, 51%, and 56% of the clicks are outside the ground-truth
regions for the Pause&Click, Follow&Click, and Spot&Click
in case of the erratic motion. These numbers drastically drops
to 5%, 11%, and 24% in case of smooth motion.

TABLE II
RATIO OF OUT-REGION CLICKS

All Smooth Erratic

Pause&Click 8% 5% 16%
307 / 3987 157 / 3065 150 / 922

Follow&Click 19.55% 11% 51%
2191 / 11207 1003 / 8788 1230 / 2419

Spot&Click 30.45% 24% 56%
2369 / 7773 1470 / 6016 984 / 1757

The click accuracy is negatively correlated with the target
size. When we ranked the tracking sequences according to
their target size (see Fig. 3), we observe that the smaller targets
lead to less accurate human input. This negative influence be-
comes more significant for the Follow&Click and Spot&Click
scenarios since small targets are difficult to follow and spot
under more stringent operating conditions.
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Fig. 3. Average center distance error ranked by the target velocity and target size respectively. The center errors are based on the normalization that all
targets are resized to a 50× 50 unit region while the target velocity and target size are consistent to users’ observation.
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Fig. 4. HIC distributions for smooth (left) and erratic (right) motion sequences. The click accuracy deteriorates when motion becomes more unpredictable.
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TABLE I
STATISTICS OF HUMAN INITIALIZATION CLICKS

Scenario Sequence Clicks Distance Error Overlap
Mean Variance Mean Variance

Pause&Click
smooth motion 3065 11.75 285.41 0.63 0.04

all 3987 13.03 267.68 0.60 0.05
erratic motion 922 17.29 185.17 0.49 0.05

Follow&Click
smooth motion 8788 14.72 184.94 0.55 0.05

all 11207 18.59 307.48 0.50 0.07
erratic motion 2419 32.63 501.37 0.29 0.06

Spot&Click
smooth motion 6016 22.01 408.04 0.44 0.06

all 7773 25.11 480.98 0.40 0.07
erratic motion 1757 35.73 585.00 0.26 0.06

IV. AUTOMATIC REFINEMENT PIPELINE

Above, we showed that initialization errors are inevitable
and can dislocate the initial click substantially outside the
correct target region. Since most object tracking algorithms
require sufficiently accurate initial object region, here we
present a multi-cue based refinement method to compensate
for the initialization errors.

Our refinement method is designed for arbitrary sized and
general class of targets, therefore it does not require any
other prior information or pretrained models. The pipeline of
proposed framework is illustrated in Fig. 5. We formulate the
task of finding the refined position as a maximum likelihood
estimate. To determine the most likely object region, we
employ a set of objectness and saliency cues in addition to
the click information, compute a target likelihood map that
aggregates multiple confidence maps of all candidate object
windows, and select the window that has the highest likelihood
score.

More specifically, we select the window B∗ that has the
maximum response on the target likelihood map L(Bi; c)

B∗ = arg max
Bi

L(Bi; c), i = 1, ..., N (1)

over N candidate windows Bi generated by an object proposal
method, for instance, MCG[36], EdgeBox[37], BING[38],
RPN[39] using color and motion cues, and considering the
initial click position c = [xc, yc].

Assuming a mixture model, the likelihood for a window
Bi is calculated by aggregating the target likelihood map
T (x|Bi; c) scores of pixels inside the window region as

L(Bi; c) = αi
∑
x∈Bi

T (x|Bi; c), (2)

where x = [x, y] is a pixel inside the window Bi and αi is
an normalization factor that is inversely proportional to the
window size.

In the target likelihood map T (x|B; c), the value of each
pixel x indicates its likelihood belonging to the target object.
It is accumulated over individual confidence maps of the
windows that are generated by the set of object proposals in
the current frame

T (x|B; c) = λs(x)

N∑
i=1

p(x|Bi)λc(x|Bi; c) (3)

where λc(·) and λs(·) are the two terms that imposes prox-
imity to initial click and similarity to appearance and motion

based saliency, respectively. Notice that, the target likelihood
map also uses the candidate proposals by their accumulating
probabilities. In this mixture model, each proposal contributes
to the likelihood map with its confidence scores corresponding
to its model over pixels. As a result, the target likelihood map
accumulates the confidences of all proposal windows.

For a given frame, the candidate windows Bi are generated
by objectness methods. Each proposal is defined by its object-
ness score oi, window center xi and size (wi, hi). We model
each window with a 2D Gaussian kernel as

p(x;Bi) =
1

2π|Σi|0.5
exp

(
− (x− xi)

TΣ−1i (x− xi)

2

)
(4)

where Σi is the 2 × 2 covariance matrix computed for each
window.

Using all proposals, we accumulate the T (x|B; c) by Eq. 3
and Eq. 4. We then compute the likelihood scores L(Bi; c)
for each proposal window Bi by Eq. 2.

A. Click Term λc

Object proposal algorithms find many object-like regions,
including both target we want and other objects in background.
To distinguish the user-specified target from the possible
distractors, the user click plays a critical role.

As shown in Fig. 2, the human click distribution resembles
a multivariate Gaussian function around the original object
center. Based on this observation, the probability distribution
of the click location can be modeled by a Gaussian kernel
centered at the original window center xgt. Given a human
click, the probability distribution of the target location can be
modeled by a same distribution, which centered at xc instead.
Therefore, we define the click term each pixel with a 2D
Gaussian distribution

λc(x|Bi; c) =
1

2πσ2
m

exp

(
−|x− xc|2

2σ2
m

)
(5)

where σm is positively proportional to the square root of
the frame size m, and further weighted by a sigmoid function
of the average motion magnitude term αm of the frame as

σm ∝
√
m

1 + e−αm
(6)

where αm is the average norm of the optical flow vectors
between two successive frames.

We observe that the erratic motion sequences always contain
large motion magnitudes and large center errors. As a result,
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Fig. 5. The pipeline of the refinement method. (a) The input frame. (b) The computed saliency weight term. (c) The click model is a Gaussian kernel
centered at the click position with a fixed covariance matrix learned from the dataset. The red cross denotes the user click and the green rectangle denotes
the ground-truth region. (d) Candidate windows are generated by the objectness algorithm using both color and motion cues. (e) The TLM accumulated with
individual confidence maps of all the windows weighted by the input click and the saliency. The window likelihoods are calculated. (f) The target is the
maximum likelihood estimate. The blue window shows the refined window.

we extend the weighting term to a larger region around
the human click position. However, the effectiveness of the
magnitude weight may vary in different sequences. To address
this, we select the proposals that contain the input human
click within their windows. This leads to a more consistent
target likelihood map T (x|B; c) that efficiently suppresses the
background clutter.

B. Object Proposals Bi
We use both color and motion cues to generate object

proposals. The object proposal algorithms [37], [38], [36], [39]
are initially designed to work on color gradients.

For both color and motion cues, we select the same number
of candidates with the largest objectness scores. Notice that,
in some frames target movements are relatively small, con-
sequently resulting in insufficient proposals from the motion
cue, in which case we use the candidates only from the color
cue.

1) MCG: Multiscale Combinatorial Grouping (MCG) [36]
is a unified approach for bottom-up segmentation and object
candidate generation. At its core are a fast eigenvector compu-
tation for normalized-cut segmentation and an efficient algo-
rithm for combinatorial merging of hierarchical regions [40],
like [41] and [42]. It improves on a multi-scale hierarchical
segmentation [43].

2) BING: Instead of the segmentation and grouping strat-
egy, Binarized Normed Gradients (BING) [38] uses a trained
linear classifier upon edges and computes scores for candidate
windows using efficient representations, which makes this
pipeline very fast.

3) EdgeBoxes: [37] measures the difference the number of
contours that are wholly contained in a bounding box and
those crossing the box boundaries, and uses this difference
as an indicator of the likelihood of the box containing an
object. Using efficient data structures, it can evaluate millions
of candidate boxes in a fraction of a second, returning a ranked
set of a few thousand top-scoring proposals.

4) RPN: The faster R-CNN [39] introduces a Region Pro-
posal Network (RPN) to generate candidate windows for the
object detection task. It is embedded in the fast R-CNN [44]
framework, with which shares the convolutional features. The
reported detection precision using the RPN outperforms the
Selective Search [41] and EdgeBoxes with less proposals.

We employ all these four proposal algorithms in our re-
finement framework using their pretrained models that are
supplied by their authors to determine the most suitable object
proposal method for automatic initialization of object tracking.
Motion gradients are computed by optical flow where we use
the fast version of the large distance optical flow [45].

Ground−truth Edgebox BING MCG RPN

Fig. 6. 10 best-matched proposed windows for each object proposal algorithm.

Fig. 7. Sample saliency maps of initialization frames using DRFI [46].

C. Saliency Term λs

In addition to the click weight λc that suppresses the
proposals further away from the click position, the target
likelihood map is also weighted by a saliency confidence map
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Algorithm 1: Refinement method

Proposals:
1. Generate candidate windows Bi by selecting a fixed

number of the highest ranking proposals with respect
to their objectness scores using both appearance and
motion cues.

Target Likelihood Map:
2. Calculate the click term λc by Eq. 5.
3. Calculate the saliency term λs.
4. Accumulate the target likelihood map T (x|B; c)

from all candidate windows by Eq. 3.
7. Calculate the window likelihood scores by Eq. 2.
8. Select the final window by Eq. 1.

λs to emphasize on the salient parts of the image. Here,
we employ the Discriminative Regional Feature Integration
(DRFI) [46], to generate saliency scores for all pixels. DRFI
fuses a set of multilevel saliency maps {S1, ..., SL} such that

λs(x) =

L∑
l=1

wlSl(x). (7)

At each level, a pixel x is scored by a regional saliency
descriptor integrating the local contrast, local appearance and
local objectness. In comparison to other saliency methods,
DRFI achieves superior performance [47]. For sample saliency
results, see Fig. 7.

V. EXPERIMENT RESULTS

We evaluate two aspects of the refinement strategy: the
effectiveness of compensating for the click center error, and
the ability to recover a target window size from a single click.

In addition, we analyze different combinations of object-
ness and saliency cues to discover an optimal solution. The
best results are obtained using EdgeBoxes with color and
motion cues with saliency term. MCG outperforms others
on sequences with severe boundary blur. RPN achieves the
leading performance for pedestrian targets. There are several
factors affecting the performance of the refinement process
and the details are discussed in the following sections.

In Figure 8, we show sample refinement outputs that il-
lustrates the proposed refinement strategy is effective under
various circumstances. Even for the clicks outside the target
region, the refinement strategy recovers the correct target
windows.

A. Experimental Settings

We use the real human inputs in HIC dataset collected on T-
B50 as explained in Section III. Since the human clicks exhibit
an acceptable accuracy for stationary frames, we focus on the
erratic motion sequences where human clicks are frequently
outside the ground-truth object region. We highlight the results
for the erratic sequences and compare them against the human
input performance. Similarly, since the Pause&Click strategy

has limited versatility in practical applications, we concentrate
on the Follow&Click and Spot&Click scenarios.

The HIC dataset contains about 18,980 clicks (11,207 for
Follow&Click scenario and 7,773 for Spot&Click scenario),
approximately 400 clicks from each sequence that cover the
targets within an average span of 500 frames. These clicks
can be entered at any arbitrary frame in a video to simulate
real-life settings of tracker initialization. The reported results
in this section for the erratic motion are based on 11 sequences
and 4176 clicks where 2419 clicks are from Follow&Click and
1757 from Spot&Click.

To evaluate the refinement performance, we employ two
measures: the center error, which measures the distance be-
tween the refined and ground-truth object window centers, and
the overlap between the refined and the actual ground-truth
windows, i.e. intersection-over-union (IoU). For objective and
intuitive comparisons, the results are obtained for normalized
the target windows on a 50× 50 unit size in every frame.

B. Performance for Smooth and Erratic Motion

As discussed in Section III-D, the erratic motion sequences
exhibit more challenging initialization task for human oper-
ators, thus a refinement process is essential. We assess the
refinement performance with randomly selected clicks from
the HIC dataset. The results of the erratic motion sequences
are shown in Table III to VI.

Center Error: Figure 9 shows the center error graphs for
16 different component combinations for erratic motion se-
quences. The horizontal axis corresponds to increasing average
velocities and the vertical axis is the average error.

As seen, the refinement method consistently and effectively
reduces the center error of human clicks. The refinement
method using EdgeBoxes proposals and color and motion
saliency cues can reduce the center error more than 28.8% on
average (from 35.33 pixels of original human click errors to
25.15 pixels) for the Spot&Click scenario and 26.9% on aver-
age (from 34.03 pixels of original human click errors to 24.89
pixels) for erratic motion sequences under the Follow&Click
scenario.

For the sequences where the average velocity of the target
is larger than 6 pixels per frame, human accuracy degrades
significantly. Based on Table I, we see that the spatial error
increases almost 85%, from 16.66 pixels on average for the
smooth motion sequences, to 30.92 pixels for the erratic
motion sequences. Especially for Couple, Deer and Human9,
the center error goes over 40 pixels due to unpredictable target
movements.

For the sequences where the targets are stationary or very
slow with less than 6 pixels per frame average velocity (such
as Bolt and Redteam), the improvement is limited due to the
upper precision bound of the objectness proposal algorithm
(explained in Section V-C and shown in Fig. 12).

Overlap Ratio: Reducing the center error is one aspect
of the initialization accuracy. Since only a single click is
provided, the size of the target has to be recovered as well. To
assess the accuracy of the window size estimate, we employ
the overlap ratio. We compare against two baseline strategies
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Fig. 8. Sample refinement results for inaccurate clicks; the proposed refinement method achieves to locate the correct windows. The human click positions
are represented by red crosses while the ground-truth windows and the refined windows are represented by green and red windows, respectively.

that use object size statistics of the TB50 dataset: setting the
object window by randomly sampling from all possible target
sizes, and setting the object window as the average target size.

As shown in Table V and Table VI, and Fig. 10, the
refinement method provides more accurate window sizes for
all target velocities including the stationary targets. For the
erratic motion sequences, the refinement strategy threefold
increases the overlap ratio from 0.11 of original human clicks
to 0.379 for the Spot&Click scenario, and from 0.137 to
0.376 for the Follow&Click scenario when the window size
is set by random sampling. The improvement for the average
window size assignment is also very significant; from 0.189
to 0.379 for the Spot&Click scenario, and from 0.202 to
0.376 for the Follow&Click scenario. Another observation is
that while the human click is sensitive to the target velocity,
the refinement method demonstrates a robust performance.
Overall, the proposed method recovers more accurate window
sizes.

C. Choice of Objectness
We tested four state-of-the-art object proposal algorithms,

BING [38], MCG [36], EdgeBoxes [37] and RPN [39] on
the tracking dataset TB50. The recall responses are shown in
Table VII for up to 3000 proposals. RPN uses the original
VGG-16 model provided by its authors.

TABLE VII
RECALL RATE OF OBJECT PROPOSAL ALGORITHMS ON TB50

INITIALIZATION FRAMES

BING[38] EdgeBox[37] MCG[36] RPN[39]
96.53% 83.12% 81.55% 55.25%

In general, object proposal algorithms are evaluated on
object detection benchmarks [48][49][50]. However, visual
tracking task and its representative datasets have their own
challenges. For instance, motion often leads into blurred
boundaries, which may confuse the gradient-based object
proposal techniques. Moreover, a tracked target can be only
a partial object (such as head of a person rather than whole
body). These differences are illustrated in Fig. 11. Our obser-
vation here is that the state-of-the-art object proposal methods

have inherent limitations and they may not be able to select
a perfect match even given a large number of proposals. As
seen in Fig. 12, the object proposal methods can hardly find
a perfect window considering both the center error and the
overlap ratio. Similarly, we can see in Table V, Table VI,
Fig. 9, and Fig. 10 that object proposal methods have different
refinement results. Our refinement method improves upon this
shortcoming of the object proposals by incorporating saliency
and click terms, and reranking the proposals with respect to
their likelihood scores.

Ground−truth Edgebox BING MCG RPN

(a) (b) (c)

Fig. 11. Characteristic challenges of object tracking videos for conventional
object proposal methods. (a) Blurred boundaries. (b) Actual target is larger
than object proposals. (c) Actual target is smaller than object proposals.

To better understand how object proposal methods perform
for typical object tracking sequence, we measure the generated
proposals’ precision by an maximum overlap and a minimum
center error scores. Since some candidates have small center
error yet a low overlap ratio, which renders them unwanted,
we calculate the minimum center error only within the set
of highly-overlapped 10 candidates. Results are shown in
Fig. 12. When the number of proposals increases over a
certain number, the improvement becomes negligible. For
computational consistency of the refinement method, we fix
the number of maximum proposals to 3000 for all methods.

In recent surveys [48], MCG [36] outperforms the BING
and EdgeBoxes methods. However, when evaluated by the
center error and overlap, it fails to keep the leading place (see
Fig. 12). One reason is that, MCG tends to find entire object
regions rather than partial ones. We calculate the average
proposal size from the three methods, MCG has a 228× 166
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Fig. 9. Average center error graphs of different refinement methods for increasing target velocities for the erratic motion under the Follow&Click and
Spot&Click scenarios (lower is more accurate).
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Fig. 12. The graphs show the accuracy of the most fitting (having the
highest overlap) object proposals to the ground-truth object regions for
the initialization frames of the TB50 dataset videos. The dots show the
performance after the refinement process. (a) The maximum overlap. (b) The
minimum center errors within 10 highly-overlapped candidates. (c-d) Graphs
for up to 100 proposals.

average size while BING and EdgeBoxes are 50 × 61 and
75×71. Therefore MCG struggles to refine human inputs when
the targets are small partial objects, e.g. Deer, DragonBaby
and surfer. On the contrary, on the sequences with entire
objects, like BlurBody, BlurCar2, BlurFace, BlurOwl and
Couple, it defeats the other proposal methods.

RPN [39] has similar shortcomings when it comes to
detection of small objects. However, it is highly effective for
pedestrians. On sequences BlurBody, Couple, Human9 and
Woman, the average center error reaches 16.20 pixels and the
overlap is 0.503, which is considerably better than the other
proposal algorithms.

We observe the BING-based [38] schemes stay competitive
in terms of the center error (see Table III and IV). In contrast
to MCG, they perform inferior when evaluated by the overlap
score (see Table V and VI.) due to the excessive number of
relatively small candidates inside the true object regions (see
Fig. 11(b)).

Considering all, EdgeBoxes [37] remains as the best solu-
tion not only for the erratic motion sequences but also for
the whole dataset. It achieves robust detection for tracking
of arbitrary targets. In case of prior information, such as
object type, becomes available, it is possible to choose a
more suitable proposal generation method. It could also be an
interesting experiment to combine different proposal methods.
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TABLE III
CENTER ERROR IN ERRATIC MOTION, Follow&Click SCENARIO

SEQUENCE RAW RPN MCG BING EdgeBox
COLOR C&M COLOR C&M COLOR C&M COLOR C&M

BlurBody 30.22 11.41 15.91 18.09 16.08 30.99 30.64 27.94 26.91
BlurCar2 19.69 11.16 14.03 13.44 11.45 20.21 20.03 11.77 11.53
BlurFace 29.90 30.84 30.98 13.54 13.96 27.30 27.89 21.35 21.46
BlurOwl 35.64 27.47 35.20 13.99 12.85 20.19 17.74 10.21 10.37
Couple 43.49 19.47 20.10 22.03 25.30 35.20 35.20 34.62 33.13
Deer 45.68 77.92 67.39 77.64 88.12 33.08 33.84 33.58 35.72
DragonBaby 34.77 52.56 43.29 54.83 52.98 33.10 33.41 31.70 32.65
Human9 47.80 25.14 19.61 49.41 49.75 46.25 44.33 44.89 45.66
Jumping 37.61 46.37 46.12 50.59 41.02 36.65 34.69 19.93 18.72
Surfer 31.32 71.51 60.90 39.95 43.74 16.20 15.39 22.94 22.94
Woman 18.21 7.89 7.41 19.28 20.37 9.42 8.79 14.83 14.69

Average 34.03 34.70 32.81 33.89 34.15 28.05 27.45 24.89 24.89

TABLE IV
CENTER ERROR FOR ERRATIC MOTION, Spot&Click SCENARIO

SEQUENCE RAW RPN MCG BING EdgeBox
COLOR C&M COLOR C&M COLOR C&M COLOR C&M

BlurBody 29.74 10.33 17.25 13.35 12.75 25.82 25.40 24.20 21.79
BlurCar2 19.49 11.83 11.63 10.05 9.58 18.76 18.74 9.68 9.62
BlurFace 36.45 33.32 33.74 14.29 13.47 32.29 32.30 23.69 23.58
BlurOwl 40.40 34.13 41.12 25.68 22.26 30.62 29.61 18.63 18.26
Couple 47.89 21.28 19.60 30.55 26.46 42.08 39.11 43.31 44.32
Deer 40.67 65.47 53.32 76.01 86.83 30.38 30.31 25.12 25.61
DragonBaby 33.28 44.71 41.57 60.35 58.80 31.08 30.10 27.52 28.64
Human9 38.96 14.17 13.49 42.66 42.60 33.73 34.03 48.05 45.77
Jumping 44.24 37.41 38.28 34.32 25.46 38.42 36.76 18.88 15.37
Surfer 33.06 80.79 68.27 52.83 55.45 17.73 18.10 26.01 26.01
Woman 24.49 7.33 8.62 26.04 26.04 13.97 13.91 18.53 17.73

Average 35.33 32.80 31.53 35.10 34.52 28.63 28.04 25.78 25.15

We show the accuracy of the refinement process1 in
Fig. 12(a) and Fig. 12(b), denoted by colored dots. In general,
the refined outputs are not necessarily the highest-overlapped
object proposals. Since the refinement process only utilizes
unreliable human clicks and low-level image cues, it is un-
fair to compare the refinement process results with the best
possible object proposals. To our advantage, the shown per-
formance gap indicates our proposed method can be improved
further when more competent object proposal methods become
available.

D. Influence of Motion Cue:

We extend the appearance based object proposals to motion,
in particular using short-term motion gradient information, in
our refinement stage. For the sequences with large object-
camera motion, the motion cue is indispensable. As expected,
for the sequences with slow or stationary targets, the motion
cue may not be reliable enough to generate accurate proposals.
For RPN, the motion cue may even slightly degrade the
accuracy. Another observation is that human operators tend to
click at the frames with slow or stationary targets where short-
term optical flow motion boundaries may be insignificant.
Therefore, the motion cue can be considered unnecessary for
refinement for slow or stationary targets.

1We employ 3000 proposals in the refinement process.

E. Choice of Saliency Cue

We evaluate the influence of the saliency cue by running
versions with and without saliency. We show the influence
of saliency cue on erratic motion sequences in Table VIII
using the clicks from Follow&Click scenario (clicks from
Spot&Click scenario have similar responses). The most im-
proved results are achieved when the target likelihood map is
weighted by the saliency terms, which suppress the irrelevant
candidates and clutter in the background. For RPN, the center
error becomes worse for the sequences (BlurFace, Deer,
DragonBaby and Jumping) with small and partial objects.

TABLE VIII
INFLUENCE OF SALIENCY. CENTER ERROR [OVERLAP RATIO]

RPN MCG BING Edgebox

No Saliency 34.81[0.288] 37.24[0.311] 31.29[0.165] 29.60[0.327]
Saliency 32.81[0.294] 34.15[0.323] 27.45[0.198] 24.89[0.376]

F. Influence on Trackers

We evaluate the influence of the refinement process on
different trackers. Each tracker is first initialized with 100
original human clicks using random object size, and then for
comparison, initialized with the corresponding results of the
refinement process. Similar to [11], the tracking performance
is reported in two aspects: success plot and precision plot.
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TABLE V
OVERLAP FOR ERRATIC MOTION, Follow&Click SCENARIO

SEQUENCE RAW RPN MCG BING EdgeBox
RAND FIXED COLOR C&M COLOR C&M COLOR C&M COLOR C&M

BlurBody 0.087 0.100 0.438 0.425 0.322 0.335 0.044 0.045 0.227 0.223
BlurCar2 0.155 0.260 0.499 0.459 0.490 0.520 0.079 0.080 0.501 0.506
BlurFace 0.120 0.189 0.207 0.211 0.425 0.414 0.084 0.083 0.254 0.254
BlurOwl 0.137 0.230 0.197 0.183 0.431 0.546 0.224 0.247 0.651 0.651
Couple 0.130 0.216 0.508 0.477 0.350 0.336 0.189 0.190 0.275 0.290
Deer 0.096 0.133 0.061 0.093 0.090 0.050 0.172 0.164 0.325 0.328
DragonBaby 0.163 0.242 0.179 0.185 0.234 0.204 0.153 0.152 0.325 0.340
Human9 0.106 0.176 0.411 0.443 0.139 0.138 0.148 0.157 0.208 0.215
Jumping 0.156 0.181 0.173 0.125 0.214 0.333 0.200 0.231 0.421 0.432
Surfer 0.135 0.167 0.121 0.106 0.306 0.281 0.498 0.507 0.487 0.487
Woman 0.224 0.330 0.514 0.525 0.400 0.400 0.313 0.327 0.403 0.407

Average 0.137 0.202 0.301 0.294 0.309 0.323 0.191 0.198 0.371 0.376

TABLE VI
OVERLAP FOR ERRATIC MOTION, Spot&Click SCENARIO

SEQUENCE RAW RPN MCG BING EdgeBox
RAND FIXED COLOR C&M COLOR C&M COLOR C&M COLOR C&M

BlurBody 0.099 0.093 0.459 0.407 0.436 0.448 0.047 0.049 0.249 0.284
BlurCar2 0.141 0.251 0.508 0.498 0.550 0.566 0.088 0.092 0.559 0.563
BlurFace 0.063 0.153 0.216 0.228 0.418 0.433 0.053 0.062 0.262 0.265
BlurOwl 0.089 0.185 0.145 0.120 0.393 0.452 0.207 0.221 0.582 0.590
Couple 0.072 0.180 0.538 0.524 0.303 0.307 0.153 0.174 0.223 0.217
Deer 0.086 0.171 0.056 0.115 0.084 0.051 0.172 0.178 0.374 0.387
DragonBaby 0.121 0.220 0.171 0.166 0.149 0.143 0.139 0.141 0.312 0.317
Human9 0.127 0.195 0.484 0.512 0.158 0.160 0.215 0.212 0.212 0.239
Jumping 0.114 0.164 0.208 0.142 0.280 0.384 0.218 0.238 0.447 0.473
Surfer 0.102 0.170 0.108 0.096 0.226 0.238 0.492 0.494 0.442 0.442
Woman 0.200 0.301 0.526 0.534 0.372 0.367 0.291 0.289 0.385 0.391

Average 0.110 0.189 0.311 0.304 0.306 0.323 0.188 0.195 0.368 0.379

These plots show the success rate and precision for varying
overlap and center error thresholds, respectively. In addition,
the area under curve (AUC) is used to score each tracker
(shown in parentheses).

As in Fig. 13, unreliable human click initializations lead
to severely degrared performance in comparison with the
experiments where the tracker is initialized by the ground-
truth target regions [11]. Among the tested trackers, Struck [2],
TLD [5] and CSK [51] are observed to be less sensitive to
initialization errors than IVT [52], CT [53], DFT [17], and
ORIA [54]. For all tested trackers, our refinement process
clearly improves the performance. The average AUC score
increases by 0.088. We also notice that, in the success plot,
the AUC scores increase 0.159, 0.139, 0.127 for Struck, TLD,
and CSK, while the improvement is 0.065, 0.054, 0.052, 0.020
for CT, IVT, DFT, and ORIA. This indicates that the accuracy
improvement is more advantageous for less sensitive trackers.

G. Performance with Multiple Objects

In Section III, we have the observation that human clicks
follow a multivariate Gaussian distribution around the original
object center. In most frames, human clicks are located near
to correct targets. However, erroneous clicks still exist due to
the relative object-camera motion.

In a set of additional experiments, we test our method’s
performance under multiple objects. To this end, we label
the closest objects to the target as distractors. As shown in

Fig. 13. Influence of the refinement process on tracking performance. Each
tracker is initialized with 100 regions centered on the original human clicks
and object size is randomly assigned from the distribution of the ground-
truth object sizes (solid graphs), and then with 100 regions obtained after the
refinement process using the corresponding human clicks (dashed graphs). As
visible, the refinement consistently improves the performance for all trackers.
Best viewed on screen and in color.

Figure 14(a) to 14(e), distractors may be located close to the
actual targets, a case that may easily cause human operator to
click on the wrong objects. Denoting Owrong as the overlap
between distractors and our refinement outputs, and Oright
as the overlap between the actual targets and our refinement
outputs, an initialization is classified as a miss (incorrect) if
Owrong > Oright. From the TB50 dataset, we select five
sequences in which distractors always move around and close
to the actual targets.

As reported in Table IX, the miss ratios after the refinement
are 11%, 24%, 31%, 1% and 1% for the selected sequences,
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respectively. These results indicate that, for most clicks, our
proposed method finds the correct objects. There are a few
failure cases we observed. Figure 14(f) shows a failure case in
which the operator clicks directly on the wrong object. We note
that our method is agnostic to object class (i.e. it is not aiming
at detecting humans or vehicles only) and designed to work
for a general class of objects. Without any prior information,
even a human operator cannot tell which object would be the
intended target by just based on a given click location.

(a) basketball (b) blurbody (c) bolt

(d) box (e) liquor (f) a miss output

Fig. 14. (a)-(e) Targets (green) and distractors (yellow). (f) Failure case:
an initial click (red) and its corresponding initialization after the refinement
process (blue).

TABLE IX
MISS RATIO OF THE REFINEMENT PROCESS FOR MULTIPLE OBJECTS

sequence basketball blurbody bolt box liquor
miss ratio 0.11 0.24 0.31 0.01 0.01

H. Computational Load

We analyze the number of operations and also report the
run-time for each component of our refinement method.

Denoting N as the number of proposals, m is the size of
image, the saliency computation DRFI [46] attains a linear
time complexity O(m) in terms of the image size. The
most computationally intensive processes are the initial seg-
mentation, which is obtained by a graph-based segmentation
approach [55], and the computation of region descriptors,
which are encoded by a 86-dimensional vector. Both of these
processes have linear time complexity to the input image size
m and can be implemented efficiently in a parallel processing
architecture.

In terms of the object proposal stage, MCG implementation2

is the least efficient solution. In CPU versions, MCG takes
more than 10 seconds for a frame with VGA resolution, while
BING, Edgeboxes and RPN have linear complexity O(m).
In RPN, the forward-propagation (feature computation) of the
CNN has complexity O(mf2lc), where f is the number of
feature maps in one layer, l is the number of layers, and c
is the time complexity of one convolution operator. We note
that the specific CNN version we used is designed for GPU

2http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/

architectures and runs in real-time. (BING can achieve above
300 fps, RPN 100 fps, and EdgeBoxes 30 fps as reported in
the past.)

Complexity of the target likelihood map computation stage
is O(Nm) since we calculate the confidence value for each
pixel using Eq. 4. The pixel-wise scores can be computed in
parallel, thus the time complexity can be optimized to O(m).
In short, the component solutions we used in our framework
can be implemented on a parallel processing architecture for
real-time performance.

The run-times of our unoptimized implementation can be
found in Table X. Hardware platform we used is Xeon E5-
2650 @ 2.0 GHz CPU with 16G RAM. Average frame reso-
lution is 526 × 354 pixels. The target likelihood map, proposal
generation, and optical flow can be calculated within about 0.6
seconds in all. The bottleneck is the saliency computation, i.e.
DRFI, which takes 1.8 seconds for one frame.

The proposed method has a high potential to achieve real-
time performance based on two considerations: Firstly, it
can be accelerated with more efficient implementations. Both
TLM and DRFI computations are parallelizable, which can be
accelerated remarkably on parallel processing hardware (e.g.
on a GPU). DRFI reportedly achieved 0.418s with a similar
image resolution [46]. Besides, the TLM and edgeboxes im-
plementations are programmed with Matlab code which can
be accelerated by using another language, like C/C++.

Secondly, our refinement method is flexible in selecting
various components as discussed in Section V-C and V-E.
This means, it is possible to choose more efficient proposal,
saliency, and optical flow generation methods such as BING
that runs at 300 fps, minimum barrier saliency [56] at 80 fps.
As demonstrated in Section V-E, our method can even perform
competently without the saliency cue.

TABLE X
RUN-TIMES OF THE PROPOSED REFINEMENT FRAMEWORK

Process Run-time Code
Refinement Process 0.1555 Matlab

Proposal (Edgeboxes [37]) 0.2908 Matlab
Optical Flow (EPPM [57]) 0.1507 C

Saliency (DRFI [46]) 1.802 C
Overall 2.399

VI. CONCLUSION

In this paper, we provided a systematic analysis of human
initialization accuracy. We introduced a new human initial-
ization click (HIC) datasets that contains more than 20,000
human initializations. We discussed three operation scenarios
and underlined the influences of target velocity and target size
on the accuracy of human clicks.

In addition, we presented an automatic refinement strategy
that can leverage any state-of-the-art trackers into human-
centric interactive tracking solutions. We analyzed multiple
object proposal and image saliency methods to determine the
optimal choice of components. Our extensive evaluations show
that the initialization errors can be reduced up to 30% and the
overlap ratio can be increased 3×.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/mcg/
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Since target initialization is an integral yet under-analyzed
component of object tracking, this work naturally bridges the
gap between the state-of-the-art object tracking algorithms and
realistic human inputs. It offers a practical solution for real-
world applications.
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